Friday, December 1, 2023
HomeNanotechnologySilica nanoparticles shield rice towards biotic and abiotic stresses | Journal of...

Silica nanoparticles shield rice towards biotic and abiotic stresses | Journal of Nanobiotechnology


  • Elert E. Rice by the numbers: a great grain. Nature. 2014;514:S50-51.

    PubMed 
    Article 

    Google Scholar
     

  • Fernandez J, Orth Okay. Rise of a cereal killer: the biology of Magnaporthe oryzae biotrophic progress. Developments Microbiol. 2018;26:582–97.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kasote D, Sreenivasulu N, Acuin C, Regina A. Enhancing well being advantages of milled rice: present standing and future views. Crit Rev Meals Sci Nutr. 2021. https://doi.org/10.1080/10408398.2021.1925629.

    Article 
    PubMed 

    Google Scholar
     

  • Liu B, Stevens-Inexperienced R, Johal D, Buchanan R, Geddes-McAlister J. Fungal pathogens of cereal crops: Proteomic insights into fungal pathogenesis, host protection, and resistance. J Plant Physiol. 2022;269: 153593.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Muhaj FF, George SJ, Nguyen CD, Tyring SK. Antimicrobials and resistance half ii: antifungals, antivirals, and antiparasitics. J Am Acad Dermatol. 2022. https://doi.org/10.1016/j.jaad.2021.11.065.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pennisi E. Armed and harmful. Science. 2010;327:804–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu Z, Zhu Y, Shi H, Qiu J, Ding X, Kou Y. Latest progress in rice broad-spectrum illness resistance. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222111658.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skamnioti P, Gurr SJ. In opposition to the grain: safeguarding rice from rice blast illness. Developments Biotechnol. 2009;27:141–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • White JC, Gardea-Torresdey J. Attaining meals safety by the very small. Nat Nanotechnol. 2018;13:627–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Elmer W, White JC. The way forward for nanotechnology in plant pathology. Annu Rev Phytopathol. 2018;56:111–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kah M, Tufenkji N, White JC. Nano-enabled methods to boost crop diet and safety. Nat Nanotechnol. 2019;14:532–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lowry GV, Avellan A, Gilbertson LM. Alternatives and challenges for nanotechnology within the agri-tech revolution. Nat Nanotechnol. 2019;14:517–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fu L, Wang ZY, Dhankher OP, Xing BS. Nanotechnology as a brand new sustainable strategy for controlling crop illnesses and rising agricultural manufacturing. J Exp Bot. 2020;71:507–19.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Elmer WH, White JC. The usage of metallic oxide nanoparticles to boost progress of tomatoes and eggplants in illness infested soil or soilless medium. Environ Sci Nano. 2016;3:1072–9.

    CAS 
    Article 

    Google Scholar
     

  • Baker S, Volova T, Prudnikova SV, Satish S, Prasad MNN. Nanoagroparticles rising tendencies and future prospect in fashionable agriculture system. Environ Toxicol Pharmacol. 2017;53:10–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kaur P, Thakur R, Duhana JS, Chaudhury A. Administration of wilt illness of chickpea in vivo by silver nanoparticles biosynthesized by rhizospheric microflora of chickpea (Cicer arietinum). J Chem Technol Biotechnol. 2018;93:3233–43.

    CAS 
    Article 

    Google Scholar
     

  • Kumari M, Shukla S, Pandey S, Giri VP, Bhatia A, Tripathi T, Kakkar P, Nautiyal CS, Mishra A. Enhanced mobile internalization: a bactericidal mechanism extra relative to biogenic nanoparticles than chemical counterparts. ACS Appl Mater Interfaces. 2017;9:4519–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kumari M, Giri VP, Pandey S, Kumar M, Katiyar R, Nautiyal CS, Mishra A. An perception into the mechanism of antifungal exercise of biogenic nanoparticles than their chemical counterparts. Pestic Biochem Physiol. 2019;157:45–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Chu H, Kim HJ, Kim JS, Kim MS, Yoon BD, Park HJ, Kim CY. A nanosized Ag-silica hybrid advanced ready by gamma-irradiation prompts the protection response in Arabidopsis. Radiat Phys Chem. 2012;81:180–4.

    CAS 
    Article 

    Google Scholar
     

  • Imada Okay, Sakai S, Kajihara H, Tanaka S, Ito S. Magnesium oxide nanoparticles induce systemic resistance in tomato towards bacterial wilt illness. Plant Pathol. 2016;65:551–60.

    CAS 
    Article 

    Google Scholar
     

  • Kumaraswamy RV, Kumari S, Choudhary RC, Pal A, Raliya R, Biswas P, Saharan V. Engineered chitosan primarily based nanomaterials: bioactivities, mechanisms and views in plant safety and progress. Int J Biol Macromol. 2018;113:494–506.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nadendla SR, Rani TS, Vaikuntapu PR, Maddu RR, Podile AR. HarpinPss encapsulation in chitosan nanoparticles for improved bioavailability and illness resistance in tomato. Carbohydr Polym. 2018;199:11–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hao Y, Yuan W, Ma CX, White JC, Zhang ZT, Adeel M, Zhou T, Rui YK, Xing BS. Engineered nanomaterials suppress Turnip mosaic virus an infection in tobacco (Nicotiana benthamiana). Environ Sci Nano. 2018;5:1685–93.

    CAS 
    Article 

    Google Scholar
     

  • Li Z, Music ZL, Yan ZF, Hao Q, Music AL, Liu LA, Yang XM, Xia SP, Liang YC. Silicon enhancement of estimated plant biomass carbon accumulation beneath abiotic and biotic stresses. A meta-analysis. Agron Maintain Dev. 2018;38:1–9.

    Article 

    Google Scholar
     

  • Debona D, Rodrigues FA, Datnoff LE. Silicon’s position in abiotic and biotic plant stresses. Annu Rev Phytopathol. 2017;55:85–107.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma JF, Tamai Okay, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice. Nature. 2006;440:688–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Meharg C, Meharg AA. Silicon, the silver bullet for mitigating biotic and abiotic stress, and enhancing grain high quality, in rice? Environ Exp Bot. 2015;120:8–17.

    CAS 
    Article 

    Google Scholar
     

  • Wang M, Gao L, Dong S, Solar Y, Shen Q, Guo S. Function of silicon on plant-pathogen interactions. Entrance Plant Sci. 2017;8:701.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Brunings AM, Datnoff LE, Ma JF, Mitani N, Nagamura Y, Rathinasabapathi B, Kirst M. Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Ann Appl Biol. 2009;155:161–70.

    CAS 
    Article 

    Google Scholar
     

  • El-Shetehy M, Moradi A, Maceroni M, Reinhardt D, Petri-Fink A, Rothen-Rutishauser B, Mauch F, Schwab F. Silica nanoparticles improve illness resistance in Arabidopsis vegetation. Nat Nanotechnol. 2021;16:344–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jones JD, Dangl JL. The plant immune system. Nature. 2006;444:323–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Durrant WE, Dong X. Systemic acquired resistance. Annu Rev Phytopathol. 2004;42:185–209.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li Okay, Xing R, Liu S, Li P. Chitin and chitosan fragments accountable for plant elicitor and progress stimulator. J Agric Meals Chem. 2020;68:12203–11.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD. Systemic acquired resistance. Plant Cell. 1996;8:1809–19.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mauch F, Mauch-Mani B, Gaille C, Kull B, Haas D, Reimmann C. Manipulation of salicylate content material in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J. 2001;25:67–77.

    CAS 
    PubMed 

    Google Scholar
     

  • El-Shetehy M, Wang C, Shine MB, Yu Okay, Kachroo A, Kachroo P. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in vegetation. Plant Sign Behav. 2015;10: e998544.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Prime APG, Conrath U, Beckers GJ, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, et al. Priming: preparing for battle. Mol Plant Microbe Work together. 2006;19:1062–71.

    Article 
    CAS 

    Google Scholar
     

  • Mauch-Mani B, Baccelli I, Luna E, Flors V. Protection priming: an adaptive a part of induced resistance. Annu Rev Plant Biol. 2017;68:485–512.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yuan J, Tedman J, Ali L, Liu J, Taylor J, Lightfoot D, Iwata M, Pauls KP. Completely different responses of two genes related to illness resistance loci in maize (Zea mays L.) to 3-allyloxy-1,2-benzothiazole 1,1-dioxide. Curr Points Mol Biol. 2009;11(Suppl 1):i85-94.

    CAS 
    PubMed 

    Google Scholar
     

  • Son S, Moon SJ, Kim H, Lee KS, Park SR. Identification of a novel NPR1 homolog gene, OsNH5N16, which contributes to broad-spectrum resistance in rice. Biochem Biophys Res Commun. 2021;549:200–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Heck S, Grau T, Buchala A, Metraux JP, Nawrath C. Genetic proof that expression of NahG modifies defence pathways impartial of salicylic acid biosynthesis within the Arabidopsis-Pseudomonas syringae pv. tomato interplay. Plant J. 2003;36:342–52.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Talbot NJ, Ebbole DJ, Hamer JE. Identification and characterization of MPG1, a gene concerned in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell. 1993;5:1575–90.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin Z, Chen C, Yang J, Feng W, Liu X, Zuo R, Wang J, Yang L, Zhong Okay, Gao C, et al. Histone acetyltransferase MoHat1 acetylates autophagy-related proteins MoAtg3 and MoAtg9 to orchestrate purposeful appressorium formation and pathogenicity in Magnaporthe oryzae. Autophagy. 2019;15:1234–57.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu X, Zhou Q, Guo Z, Liu P, Shen L, Chai N, Qian B, Cai Y, Wang W, Yin Z, et al. A self-balancing circuit centered on MoOsm1 kinase governs adaptive responses to host-derived ROS in Magnaporthe oryzae. Elife. 2020. https://doi.org/10.7554/eLife.61605.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qi Z, Liu M, Dong Y, Zhu Q, Li L, Li B, Yang J, Li Y, Ru Y, Zhang H, et al. The syntaxin protein (MoSyn8) mediates intracellular trafficking to manage conidiogenesis and pathogenicity of rice blast fungus. New Phytol. 2016;209:1655–67.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yin Z, Feng W, Chen C, Xu J, Li Y, Yang L, Wang J, Liu X, Wang W, Gao C, et al. Shedding mild on autophagy coordinating with cell wall integrity signaling to control pathogenicity of Magnaporthe oryzae. Autophagy. 2020;16:900–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Liu M, Hu J, Zhang A, Dai Y, Chen W, He Y, Zhang H, Zheng X, Zhang Z. Auxilin-like protein MoSwa2 promotes effector secretion and virulence as a clathrin uncoating issue within the rice blast fungus Magnaporthe oryzae. New Phytol. 2021;230:720–36.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Liu X, Yang J, Qian B, Cai Y, Zou X, Zhang H, Zheng X, Wang P, Zhang Z. MoYvh1 subverts rice protection by capabilities of ribosomal protein MoMrt4 in Magnaporthe oryzae. PLoS Pathog. 2018;14: e1007016.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Guo M, Guo W, Chen Y, Dong S, Zhang X, Zhang H, Music W, Wang W, Wang Q, Lv R, et al. The essential leucine zipper transcription issue Moatf1 mediates oxidative stress responses and is critical for full virulence of the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Work together. 2010;23:1053–68.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim TG, An GS, Han JS, Hur JU, Park BG, Choi S-C. Synthesis of measurement managed spherical silica nanoparticles by way of sol-gel course of inside hydrophilic solvent. J Korean Ceram Soc. 2017;54:49–54.

    CAS 
    Article 

    Google Scholar
     

  • Camañes G, Pastor V, Cerezo M, García-Andrade J, Vicedo B, García-Agustín P, Flors V. A deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation, leading to primed plant defenses. Plant Physiol. 2011;158:1054–66.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Liang Y, Hua H, Zhu YG, Zhang J, Cheng C, Römheld V. Significance of plant species and exterior silicon focus to energetic silicon uptake and transport. New Phytol. 2006;172:63–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Li X, Yu B, Wu Q, Min Q, Zeng R, Xie Z, Huang J. OsMADS23 phosphorylated by SAPK9 confers drought and salt tolerance by regulating ABA biosynthesis in rice. PLoS Genet. 2021;17: e1009699.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fleck AT, Mattusch J, Schenk MK. Silicon decreases the arsenic degree in rice grain by limiting arsenite transport. J Plant Nutr Soil Sci. 2013;176:785–94.

    CAS 
    Article 

    Google Scholar
     

  • Wang L, Ashraf U, Chang C, Abrar M, Cheng X. Results of silicon and phosphatic fertilization on rice yield and soil fertility. J Soil Sci Plant Nutr. 2019;20:557–65.

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Liu Y, Zhan W, Zheng Okay, Lian M, Zhang C, Ruan X, Li T. Lengthy-term stabilization of Cd in agricultural soil utilizing mercapto-functionalized nano-silica (MPTS/nano-silica): a three-year subject examine. Ecotoxicol Environ Saf. 2020;197: 110600.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Prabu P, Kannan N. Impact of nanosilica and silicon sources on plant progress selling rhizobacteria, soil vitamins and maize seed germination. IET Nanobiotechnol. 2013;7:70–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • El-Naggar ME, Abdelsalam NR, Fouda MMG, Mackled MI, Al-Jaddadi MAM, Ali HM, Siddiqui MH, Kandil EE. Soil utility of nano silica on maize yield and its insecticidal exercise towards some saved bugs after the post-harvest. Nanomaterials. 2020. https://doi.org/10.3390/nano10040739.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Boundaries, pathways and processes for uptake, translocation and accumulation of nanomaterials in vegetation—vital overview. Nanotoxicology. 2016;10:257–78.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solar D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, Cahill DM. Uptake and mobile distribution, in 4 plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep. 2014;33:1389–402.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ross AF. Systemic acquired resistance induced by localized virus infections in vegetation. Virology. 1961;14:340–58.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • An C, Mou Z. Salicylic acid and its perform in plant immunity. J Integr Plant Biol. 2011;53:412–28.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Najafi S, Razavi SM, Khoshkam M, Asadi A. Results of inexperienced synthesis of sulfur nanoparticles from Cinnamomum zeylanicum barks on physiological and biochemical components of Lettuce (Lactuca sativa). Physiol Mol Biol Crops. 2020;26:1055–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Salem NM, Albanna LS, Awwad AM. Inexperienced synthesis of sulfur nanoparticles utilizing Punica granatum peels and the consequences on the expansion of tomato by foliar spray purposes. Environ Nanotechnol Monitor Manag. 2016;6:83–7.

    Article 

    Google Scholar
     

  • Kaur H, Greger M. A overview on Si uptake and transport system. Crops (Basel). 2019. https://doi.org/10.3390/plants8040081.

    Article 

    Google Scholar
     

  • Tilman D, Balzer C, Hill J, Befort BL. International meals demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA. 2011;108:20260–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cao X, Wang C, Luo X, Yue L, White JC, Elmer W, Dhankher OP, Wang Z, Xing B. Elemental sulfur nanoparticles improve illness resistance in tomatoes. ACS Nano. 2021. https://doi.org/10.1021/acsnano.1c02917.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Epstein E. The anomaly of silicon in plant biology. Proc Natl Acad Sci USA. 1994;91:11–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Richmond KE, Sussman M. Received silicon? The non-essential helpful plant nutrient. Curr Opin Plant Biol. 2003;6:268–72.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma JF, Yamaji N. Silicon uptake and accumulation in increased vegetation. Developments Plant Sci. 2006;11:392–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ding P, Ding Y. Tales of salicylic acid: a plant protection hormone. Developments Plant Sci. 2020;25:549–65.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bourquin J, Milosevic A, Hauser D, Lehner R, Clean F, Petri-Fink A, Rothen-Rutishauser B. Biodistribution, clearance, and long-term destiny of clinically related nanomaterials. Adv Mater. 2018;30: e1704307.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments