Elert E. Rice by the numbers: a great grain. Nature. 2014;514:S50-51.
Fernandez J, Orth Okay. Rise of a cereal killer: the biology of Magnaporthe oryzae biotrophic progress. Developments Microbiol. 2018;26:582–97.
Kasote D, Sreenivasulu N, Acuin C, Regina A. Enhancing well being advantages of milled rice: present standing and future views. Crit Rev Meals Sci Nutr. 2021. https://doi.org/10.1080/10408398.2021.1925629.
Liu B, Stevens-Inexperienced R, Johal D, Buchanan R, Geddes-McAlister J. Fungal pathogens of cereal crops: Proteomic insights into fungal pathogenesis, host protection, and resistance. J Plant Physiol. 2022;269: 153593.
Muhaj FF, George SJ, Nguyen CD, Tyring SK. Antimicrobials and resistance half ii: antifungals, antivirals, and antiparasitics. J Am Acad Dermatol. 2022. https://doi.org/10.1016/j.jaad.2021.11.065.
Pennisi E. Armed and harmful. Science. 2010;327:804–5.
Liu Z, Zhu Y, Shi H, Qiu J, Ding X, Kou Y. Latest progress in rice broad-spectrum illness resistance. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222111658.
Skamnioti P, Gurr SJ. In opposition to the grain: safeguarding rice from rice blast illness. Developments Biotechnol. 2009;27:141–50.
White JC, Gardea-Torresdey J. Attaining meals safety by the very small. Nat Nanotechnol. 2018;13:627–9.
Elmer W, White JC. The way forward for nanotechnology in plant pathology. Annu Rev Phytopathol. 2018;56:111–33.
Kah M, Tufenkji N, White JC. Nano-enabled methods to boost crop diet and safety. Nat Nanotechnol. 2019;14:532–40.
Lowry GV, Avellan A, Gilbertson LM. Alternatives and challenges for nanotechnology within the agri-tech revolution. Nat Nanotechnol. 2019;14:517–22.
Fu L, Wang ZY, Dhankher OP, Xing BS. Nanotechnology as a brand new sustainable strategy for controlling crop illnesses and rising agricultural manufacturing. J Exp Bot. 2020;71:507–19.
Elmer WH, White JC. The usage of metallic oxide nanoparticles to boost progress of tomatoes and eggplants in illness infested soil or soilless medium. Environ Sci Nano. 2016;3:1072–9.
Baker S, Volova T, Prudnikova SV, Satish S, Prasad MNN. Nanoagroparticles rising tendencies and future prospect in fashionable agriculture system. Environ Toxicol Pharmacol. 2017;53:10–7.
Kaur P, Thakur R, Duhana JS, Chaudhury A. Administration of wilt illness of chickpea in vivo by silver nanoparticles biosynthesized by rhizospheric microflora of chickpea (Cicer arietinum). J Chem Technol Biotechnol. 2018;93:3233–43.
Kumari M, Shukla S, Pandey S, Giri VP, Bhatia A, Tripathi T, Kakkar P, Nautiyal CS, Mishra A. Enhanced mobile internalization: a bactericidal mechanism extra relative to biogenic nanoparticles than chemical counterparts. ACS Appl Mater Interfaces. 2017;9:4519–33.
Kumari M, Giri VP, Pandey S, Kumar M, Katiyar R, Nautiyal CS, Mishra A. An perception into the mechanism of antifungal exercise of biogenic nanoparticles than their chemical counterparts. Pestic Biochem Physiol. 2019;157:45–52.
Chu H, Kim HJ, Kim JS, Kim MS, Yoon BD, Park HJ, Kim CY. A nanosized Ag-silica hybrid advanced ready by gamma-irradiation prompts the protection response in Arabidopsis. Radiat Phys Chem. 2012;81:180–4.
Imada Okay, Sakai S, Kajihara H, Tanaka S, Ito S. Magnesium oxide nanoparticles induce systemic resistance in tomato towards bacterial wilt illness. Plant Pathol. 2016;65:551–60.
Kumaraswamy RV, Kumari S, Choudhary RC, Pal A, Raliya R, Biswas P, Saharan V. Engineered chitosan primarily based nanomaterials: bioactivities, mechanisms and views in plant safety and progress. Int J Biol Macromol. 2018;113:494–506.
Nadendla SR, Rani TS, Vaikuntapu PR, Maddu RR, Podile AR. HarpinPss encapsulation in chitosan nanoparticles for improved bioavailability and illness resistance in tomato. Carbohydr Polym. 2018;199:11–9.
Hao Y, Yuan W, Ma CX, White JC, Zhang ZT, Adeel M, Zhou T, Rui YK, Xing BS. Engineered nanomaterials suppress Turnip mosaic virus an infection in tobacco (Nicotiana benthamiana). Environ Sci Nano. 2018;5:1685–93.
Li Z, Music ZL, Yan ZF, Hao Q, Music AL, Liu LA, Yang XM, Xia SP, Liang YC. Silicon enhancement of estimated plant biomass carbon accumulation beneath abiotic and biotic stresses. A meta-analysis. Agron Maintain Dev. 2018;38:1–9.
Debona D, Rodrigues FA, Datnoff LE. Silicon’s position in abiotic and biotic plant stresses. Annu Rev Phytopathol. 2017;55:85–107.
Ma JF, Tamai Okay, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice. Nature. 2006;440:688–91.
Meharg C, Meharg AA. Silicon, the silver bullet for mitigating biotic and abiotic stress, and enhancing grain high quality, in rice? Environ Exp Bot. 2015;120:8–17.
Wang M, Gao L, Dong S, Solar Y, Shen Q, Guo S. Function of silicon on plant-pathogen interactions. Entrance Plant Sci. 2017;8:701.
Brunings AM, Datnoff LE, Ma JF, Mitani N, Nagamura Y, Rathinasabapathi B, Kirst M. Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Ann Appl Biol. 2009;155:161–70.
El-Shetehy M, Moradi A, Maceroni M, Reinhardt D, Petri-Fink A, Rothen-Rutishauser B, Mauch F, Schwab F. Silica nanoparticles improve illness resistance in Arabidopsis vegetation. Nat Nanotechnol. 2021;16:344–53.
Jones JD, Dangl JL. The plant immune system. Nature. 2006;444:323–9.
Durrant WE, Dong X. Systemic acquired resistance. Annu Rev Phytopathol. 2004;42:185–209.
Li Okay, Xing R, Liu S, Li P. Chitin and chitosan fragments accountable for plant elicitor and progress stimulator. J Agric Meals Chem. 2020;68:12203–11.
Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD. Systemic acquired resistance. Plant Cell. 1996;8:1809–19.
Mauch F, Mauch-Mani B, Gaille C, Kull B, Haas D, Reimmann C. Manipulation of salicylate content material in Arabidopsis thaliana by the expression of an engineered bacterial salicylate synthase. Plant J. 2001;25:67–77.
El-Shetehy M, Wang C, Shine MB, Yu Okay, Kachroo A, Kachroo P. Nitric oxide and reactive oxygen species are required for systemic acquired resistance in vegetation. Plant Sign Behav. 2015;10: e998544.
Prime APG, Conrath U, Beckers GJ, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, et al. Priming: preparing for battle. Mol Plant Microbe Work together. 2006;19:1062–71.
Mauch-Mani B, Baccelli I, Luna E, Flors V. Protection priming: an adaptive a part of induced resistance. Annu Rev Plant Biol. 2017;68:485–512.
Yuan J, Tedman J, Ali L, Liu J, Taylor J, Lightfoot D, Iwata M, Pauls KP. Completely different responses of two genes related to illness resistance loci in maize (Zea mays L.) to 3-allyloxy-1,2-benzothiazole 1,1-dioxide. Curr Points Mol Biol. 2009;11(Suppl 1):i85-94.
Son S, Moon SJ, Kim H, Lee KS, Park SR. Identification of a novel NPR1 homolog gene, OsNH5N16, which contributes to broad-spectrum resistance in rice. Biochem Biophys Res Commun. 2021;549:200–6.
Heck S, Grau T, Buchala A, Metraux JP, Nawrath C. Genetic proof that expression of NahG modifies defence pathways impartial of salicylic acid biosynthesis within the Arabidopsis-Pseudomonas syringae pv. tomato interplay. Plant J. 2003;36:342–52.
Talbot NJ, Ebbole DJ, Hamer JE. Identification and characterization of MPG1, a gene concerned in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell. 1993;5:1575–90.
Yin Z, Chen C, Yang J, Feng W, Liu X, Zuo R, Wang J, Yang L, Zhong Okay, Gao C, et al. Histone acetyltransferase MoHat1 acetylates autophagy-related proteins MoAtg3 and MoAtg9 to orchestrate purposeful appressorium formation and pathogenicity in Magnaporthe oryzae. Autophagy. 2019;15:1234–57.
Liu X, Zhou Q, Guo Z, Liu P, Shen L, Chai N, Qian B, Cai Y, Wang W, Yin Z, et al. A self-balancing circuit centered on MoOsm1 kinase governs adaptive responses to host-derived ROS in Magnaporthe oryzae. Elife. 2020. https://doi.org/10.7554/eLife.61605.
Qi Z, Liu M, Dong Y, Zhu Q, Li L, Li B, Yang J, Li Y, Ru Y, Zhang H, et al. The syntaxin protein (MoSyn8) mediates intracellular trafficking to manage conidiogenesis and pathogenicity of rice blast fungus. New Phytol. 2016;209:1655–67.
Yin Z, Feng W, Chen C, Xu J, Li Y, Yang L, Wang J, Liu X, Wang W, Gao C, et al. Shedding mild on autophagy coordinating with cell wall integrity signaling to control pathogenicity of Magnaporthe oryzae. Autophagy. 2020;16:900–16.
Liu M, Hu J, Zhang A, Dai Y, Chen W, He Y, Zhang H, Zheng X, Zhang Z. Auxilin-like protein MoSwa2 promotes effector secretion and virulence as a clathrin uncoating issue within the rice blast fungus Magnaporthe oryzae. New Phytol. 2021;230:720–36.
Liu X, Yang J, Qian B, Cai Y, Zou X, Zhang H, Zheng X, Wang P, Zhang Z. MoYvh1 subverts rice protection by capabilities of ribosomal protein MoMrt4 in Magnaporthe oryzae. PLoS Pathog. 2018;14: e1007016.
Guo M, Guo W, Chen Y, Dong S, Zhang X, Zhang H, Music W, Wang W, Wang Q, Lv R, et al. The essential leucine zipper transcription issue Moatf1 mediates oxidative stress responses and is critical for full virulence of the rice blast fungus Magnaporthe oryzae. Mol Plant Microbe Work together. 2010;23:1053–68.
Kim TG, An GS, Han JS, Hur JU, Park BG, Choi S-C. Synthesis of measurement managed spherical silica nanoparticles by way of sol-gel course of inside hydrophilic solvent. J Korean Ceram Soc. 2017;54:49–54.
Camañes G, Pastor V, Cerezo M, García-Andrade J, Vicedo B, García-Agustín P, Flors V. A deletion in NRT2.1 attenuates Pseudomonas syringae-induced hormonal perturbation, leading to primed plant defenses. Plant Physiol. 2011;158:1054–66.
Liang Y, Hua H, Zhu YG, Zhang J, Cheng C, Römheld V. Significance of plant species and exterior silicon focus to energetic silicon uptake and transport. New Phytol. 2006;172:63–72.
Li X, Yu B, Wu Q, Min Q, Zeng R, Xie Z, Huang J. OsMADS23 phosphorylated by SAPK9 confers drought and salt tolerance by regulating ABA biosynthesis in rice. PLoS Genet. 2021;17: e1009699.
Fleck AT, Mattusch J, Schenk MK. Silicon decreases the arsenic degree in rice grain by limiting arsenite transport. J Plant Nutr Soil Sci. 2013;176:785–94.
Wang L, Ashraf U, Chang C, Abrar M, Cheng X. Results of silicon and phosphatic fertilization on rice yield and soil fertility. J Soil Sci Plant Nutr. 2019;20:557–65.
Wang Y, Liu Y, Zhan W, Zheng Okay, Lian M, Zhang C, Ruan X, Li T. Lengthy-term stabilization of Cd in agricultural soil utilizing mercapto-functionalized nano-silica (MPTS/nano-silica): a three-year subject examine. Ecotoxicol Environ Saf. 2020;197: 110600.
Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Prabu P, Kannan N. Impact of nanosilica and silicon sources on plant progress selling rhizobacteria, soil vitamins and maize seed germination. IET Nanobiotechnol. 2013;7:70–7.
El-Naggar ME, Abdelsalam NR, Fouda MMG, Mackled MI, Al-Jaddadi MAM, Ali HM, Siddiqui MH, Kandil EE. Soil utility of nano silica on maize yield and its insecticidal exercise towards some saved bugs after the post-harvest. Nanomaterials. 2020. https://doi.org/10.3390/nano10040739.
Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Boundaries, pathways and processes for uptake, translocation and accumulation of nanomaterials in vegetation—vital overview. Nanotoxicology. 2016;10:257–78.
Solar D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, Cahill DM. Uptake and mobile distribution, in 4 plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep. 2014;33:1389–402.
Ross AF. Systemic acquired resistance induced by localized virus infections in vegetation. Virology. 1961;14:340–58.
An C, Mou Z. Salicylic acid and its perform in plant immunity. J Integr Plant Biol. 2011;53:412–28.
Najafi S, Razavi SM, Khoshkam M, Asadi A. Results of inexperienced synthesis of sulfur nanoparticles from Cinnamomum zeylanicum barks on physiological and biochemical components of Lettuce (Lactuca sativa). Physiol Mol Biol Crops. 2020;26:1055–66.
Salem NM, Albanna LS, Awwad AM. Inexperienced synthesis of sulfur nanoparticles utilizing Punica granatum peels and the consequences on the expansion of tomato by foliar spray purposes. Environ Nanotechnol Monitor Manag. 2016;6:83–7.
Kaur H, Greger M. A overview on Si uptake and transport system. Crops (Basel). 2019. https://doi.org/10.3390/plants8040081.
Tilman D, Balzer C, Hill J, Befort BL. International meals demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA. 2011;108:20260–4.
Cao X, Wang C, Luo X, Yue L, White JC, Elmer W, Dhankher OP, Wang Z, Xing B. Elemental sulfur nanoparticles improve illness resistance in tomatoes. ACS Nano. 2021. https://doi.org/10.1021/acsnano.1c02917.
Epstein E. The anomaly of silicon in plant biology. Proc Natl Acad Sci USA. 1994;91:11–7.
Richmond KE, Sussman M. Received silicon? The non-essential helpful plant nutrient. Curr Opin Plant Biol. 2003;6:268–72.
Ma JF, Yamaji N. Silicon uptake and accumulation in increased vegetation. Developments Plant Sci. 2006;11:392–7.
Ding P, Ding Y. Tales of salicylic acid: a plant protection hormone. Developments Plant Sci. 2020;25:549–65.
Bourquin J, Milosevic A, Hauser D, Lehner R, Clean F, Petri-Fink A, Rothen-Rutishauser B. Biodistribution, clearance, and long-term destiny of clinically related nanomaterials. Adv Mater. 2018;30: e1704307.