Saturday, December 9, 2023
HomeNanotechnologyEndoepitaxial progress of monolayer mosaic heterostructures

Endoepitaxial progress of monolayer mosaic heterostructures


  • Geim, A. Ok. & Novoselov, Ok. S. in Nanoscience and Know-how: a Assortment of Evaluations from Nature Journals (ed. Rodgers, P.) 11–19 (Nature Publishing Group, 2009).

  • Lee, C. H. et al. Atomically skinny p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    CAS 

    Google Scholar
     

  • Tan, C., Chen, J., Wu, X.-J. & Zhang, H. Epitaxial progress of hybrid nanostructures. Nat. Rev. Mater. 3, 17089 (2018).

    CAS 

    Google Scholar
     

  • Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    CAS 

    Google Scholar
     

  • Schaibley, J. R. et al. Valleytronics in 2D supplies. Nat. Rev. Mater. 1, 16055 (2016).

    CAS 

    Google Scholar
     

  • Wang, H. et al. Built-in circuits based mostly on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

    CAS 

    Google Scholar
     

  • Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition steel dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS 

    Google Scholar
     

  • Sangwan, V. Ok. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015).

    CAS 

    Google Scholar
     

  • Xu, W. et al. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541, 62–67 (2016).


    Google Scholar
     

  • Zhang, H. et al. 2D nanomaterials: graphene and transition steel dichalcogenides. Chem. Soc. Rev. 47, 3015–3017 (2018).

    CAS 

    Google Scholar
     

  • Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    CAS 

    Google Scholar
     

  • Bao, Q. et al. Graphene photonics, plasmonics, and broadband optoelectronic units. ACS Nano 6, 3677–3694 (2012).

    CAS 

    Google Scholar
     

  • Leng, Ok. et al. Molecularly skinny two-dimensional hybrid perovskites with tunable optoelectronic properties resulting from reversible floor rest. Nat. Mater. 17, 908–914 (2018).

    CAS 

    Google Scholar
     

  • Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals steel–semiconductor junctions. Nature 557, 696–700 (2018).

    CAS 

    Google Scholar
     

  • Zhou, J. et al. A library of atomically skinny steel chalcogenides. Nature 556, 355–359 (2018).

    CAS 

    Google Scholar
     

  • Shim, J. et al. Managed crack propagation for atomic precision dealing with of wafer-scale two-dimensional supplies. Science 362, 665–670 (2018).

    CAS 

    Google Scholar
     

  • Wang, L. et al. Epitaxial progress of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    CAS 

    Google Scholar
     

  • Najmaei, S. et al. Vapour part progress and grain boundary construction of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).

    CAS 

    Google Scholar
     

  • Zande, A. M. V. D. et al. Grains and grain boundaries in extremely crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).


    Google Scholar
     

  • Huang, C. et al. Lateral heterojunctions inside monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).

    CAS 

    Google Scholar
     

  • Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS 

    Google Scholar
     

  • Duan, X. et al. Lateral epitaxial progress of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    CAS 

    Google Scholar
     

  • Li, M.-Y. et al. Epitaxial progress of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).

    CAS 

    Google Scholar
     

  • Xie, S. et al. Coherent, atomically skinny transition-metal dichalcogenide superlattices with engineered pressure. Science 359, 1131–1136 (2018).

    CAS 

    Google Scholar
     

  • Lin, Z. et al. Answer-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Sturdy epitaxial progress of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

    CAS 

    Google Scholar
     

  • Sung, J. H. et al. Coplanar semiconductor-metal circuitry outlined on few-layer MoTe2 through polymorphic heteroepitaxy. Nat. Nanotechnol. 12, 1064–1070 (2017).

    CAS 

    Google Scholar
     

  • Kang, Ok. et al. Layer-by-layer meeting of two-dimensional supplies into wafer-scale heterostructures. Nature 550, 229–233 (2017).


    Google Scholar
     

  • Lin, X. et al. Intrinsically patterned two-dimensional supplies for selective adsorption of molecules and nanoclusters. Nat. Mater. 16, 717–721 (2017).

    CAS 

    Google Scholar
     

  • Jurca, T. et al. Low-temperature atomic layer deposition of MoS2 movies. Angew. Chem. Int. Ed. Engl. 56, 4991–4995 (2017).

    CAS 

    Google Scholar
     

  • Sahoo, P. Ok. et al. One-pot progress of two-dimensional lateral heterostructures through sequential edge-epitaxy. Nature 553, 63–67 (2018).

    CAS 

    Google Scholar
     

  • Mahjouri-Samani, M. et al. Patterned arrays of lateral heterojunctions inside monolayer two-dimensional semiconductors. Nat. Commun. 6, 7749 (2015).

    CAS 

    Google Scholar
     

  • Zhao, M. et al. Massive-scale chemical meeting of atomically skinny transistors and circuits. Nat. Nanotechnol. 11, 954–959 (2016).

    CAS 

    Google Scholar
     

  • Ling, X. et al. Parallel stitching of 2D supplies. Adv. Mater. 28, 2322–2329 (2016).

    CAS 

    Google Scholar
     

  • Li, H. et al. Laterally stitched heterostructures of transition steel dichalcogenide: chemical vapor deposition progress on lithographically patterned space. ACS Nano 10, 10516–10523 (2016).

    CAS 

    Google Scholar
     

  • Cho, S. et al. Part patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    CAS 

    Google Scholar
     

  • Castellanos-Gomez, A. et al. Laser-thinning of MoS2: on demand technology of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012).

    CAS 

    Google Scholar
     

  • Li, J. et al. Basic synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    CAS 

    Google Scholar
     

  • Ye, G. et al. Defects engineered monolayer MoS2 for improved hydrogen evolution response. Nano Lett. 16, 1097–1103 (2016).

    CAS 

    Google Scholar
     

  • Ma, T. et al. Edge-controlled progress and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl Acad. Sci. USA 110, 20386–20391 (2013).

    CAS 

    Google Scholar
     

  • Zhou, H. et al. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 6, 703–711 (2013).

    CAS 

    Google Scholar
     

  • Wang, S. et al. Digital and optical properties of heterostructures based mostly on transition steel dichalcogenides and graphene-like zinc oxide. Sci. Rep. 8, 12009 (2018).


    Google Scholar
     

  • Pak, S. et al. Pressure-mediated interlayer coupling results on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer. Nano Lett. 17, 5634–5640 (2017).

    CAS 

    Google Scholar
     

  • Zhang, C. et al. Pressure distributions and their affect on digital constructions of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 13, 152–158 (2018).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments