Geim, A. Ok. & Novoselov, Ok. S. in Nanoscience and Know-how: a Assortment of Evaluations from Nature Journals (ed. Rodgers, P.) 11–19 (Nature Publishing Group, 2009).
Lee, C. H. et al. Atomically skinny p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).
Tan, C., Chen, J., Wu, X.-J. & Zhang, H. Epitaxial progress of hybrid nanostructures. Nat. Rev. Mater. 3, 17089 (2018).
Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).
Schaibley, J. R. et al. Valleytronics in 2D supplies. Nat. Rev. Mater. 1, 16055 (2016).
Wang, H. et al. Built-in circuits based mostly on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).
Wang, Q. H. et al. Electronics and optoelectronics of two-dimensional transition steel dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
Sangwan, V. Ok. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015).
Xu, W. et al. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541, 62–67 (2016).
Zhang, H. et al. 2D nanomaterials: graphene and transition steel dichalcogenides. Chem. Soc. Rev. 47, 3015–3017 (2018).
Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).
Bao, Q. et al. Graphene photonics, plasmonics, and broadband optoelectronic units. ACS Nano 6, 3677–3694 (2012).
Leng, Ok. et al. Molecularly skinny two-dimensional hybrid perovskites with tunable optoelectronic properties resulting from reversible floor rest. Nat. Mater. 17, 908–914 (2018).
Liu, Y. et al. Approaching the Schottky–Mott restrict in van der Waals steel–semiconductor junctions. Nature 557, 696–700 (2018).
Zhou, J. et al. A library of atomically skinny steel chalcogenides. Nature 556, 355–359 (2018).
Shim, J. et al. Managed crack propagation for atomic precision dealing with of wafer-scale two-dimensional supplies. Science 362, 665–670 (2018).
Wang, L. et al. Epitaxial progress of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).
Najmaei, S. et al. Vapour part progress and grain boundary construction of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).
Zande, A. M. V. D. et al. Grains and grain boundaries in extremely crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).
Huang, C. et al. Lateral heterojunctions inside monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 13, 1096–1101 (2014).
Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).
Duan, X. et al. Lateral epitaxial progress of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).
Li, M.-Y. et al. Epitaxial progress of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349, 524–528 (2015).
Xie, S. et al. Coherent, atomically skinny transition-metal dichalcogenide superlattices with engineered pressure. Science 359, 1131–1136 (2018).
Lin, Z. et al. Answer-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).
Zhang, Z. et al. Sturdy epitaxial progress of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).
Sung, J. H. et al. Coplanar semiconductor-metal circuitry outlined on few-layer MoTe2 through polymorphic heteroepitaxy. Nat. Nanotechnol. 12, 1064–1070 (2017).
Kang, Ok. et al. Layer-by-layer meeting of two-dimensional supplies into wafer-scale heterostructures. Nature 550, 229–233 (2017).
Lin, X. et al. Intrinsically patterned two-dimensional supplies for selective adsorption of molecules and nanoclusters. Nat. Mater. 16, 717–721 (2017).
Jurca, T. et al. Low-temperature atomic layer deposition of MoS2 movies. Angew. Chem. Int. Ed. Engl. 56, 4991–4995 (2017).
Sahoo, P. Ok. et al. One-pot progress of two-dimensional lateral heterostructures through sequential edge-epitaxy. Nature 553, 63–67 (2018).
Mahjouri-Samani, M. et al. Patterned arrays of lateral heterojunctions inside monolayer two-dimensional semiconductors. Nat. Commun. 6, 7749 (2015).
Zhao, M. et al. Massive-scale chemical meeting of atomically skinny transistors and circuits. Nat. Nanotechnol. 11, 954–959 (2016).
Ling, X. et al. Parallel stitching of 2D supplies. Adv. Mater. 28, 2322–2329 (2016).
Li, H. et al. Laterally stitched heterostructures of transition steel dichalcogenide: chemical vapor deposition progress on lithographically patterned space. ACS Nano 10, 10516–10523 (2016).
Cho, S. et al. Part patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).
Castellanos-Gomez, A. et al. Laser-thinning of MoS2: on demand technology of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012).
Li, J. et al. Basic synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).
Ye, G. et al. Defects engineered monolayer MoS2 for improved hydrogen evolution response. Nano Lett. 16, 1097–1103 (2016).
Ma, T. et al. Edge-controlled progress and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl Acad. Sci. USA 110, 20386–20391 (2013).
Zhou, H. et al. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 6, 703–711 (2013).
Wang, S. et al. Digital and optical properties of heterostructures based mostly on transition steel dichalcogenides and graphene-like zinc oxide. Sci. Rep. 8, 12009 (2018).
Pak, S. et al. Pressure-mediated interlayer coupling results on the excitonic behaviors in an epitaxially grown MoS2/WS2 van der Waals heterobilayer. Nano Lett. 17, 5634–5640 (2017).
Zhang, C. et al. Pressure distributions and their affect on digital constructions of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 13, 152–158 (2018).