Miri, M.-A. & Alù, A. Distinctive factors in optics and photonics. Science 363, eaar7709 (2019).
Özdemir, Ş., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and distinctive factors in photonics. Nat. Mater. 18, 783–798 (2019).
Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).
Peng, B. et al. Chiral modes and directional lasing at distinctive factors. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).
Brandstetter, M. et al. Reversing the pump dependence of a laser at an distinctive level. Nat. Commun. 5, 4034 (2014).
Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014).
Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).
Chen, W., Özdemir, Ş. Ok., Zhao, G., Wiersig, J. & Yang, L. Distinctive factors improve sensing in an optical microcavity. Nature 548, 192–196 (2017).
Hodaei, H. et al. Enhanced sensitivity at higher-order distinctive factors. Nature 548, 187–191 (2017).
Guo, A. et al. Statement of P T-symmetry breaking in advanced optical potentials. Phys. Rev. Lett. 103, 093902 (2009).
Rüter, C. E. et al. Statement of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).
Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).
Feng, L. et al. Demonstration of a large-scale optical distinctive level construction. Decide. Categorical 22, 1760–1767 (2014).
Regensburger, A. et al. Parity–time artificial photonic lattices. Nature 488, 167–171 (2012).
Doppler, J. et al. Dynamically encircling an distinctive level for uneven mode switching. Nature 537, 76–79 (2016).
Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6, 1–5 (2015).
Weimann, S. et al. Topologically protected certain states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).
Shen, H., Zhen, B. & Fu, L. Topological band principle for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).
Yoon, J. W. et al. Time-asymmetric loop round an distinctive level over the complete optical communications band. Nature 562, 86–90 (2018).
Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic buildings. Phys. Rev. Lett. 106, 213901 (2011).
Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).
Zhen, B. et al. Spawning rings of remarkable factors out of Dirac cones. Nature 525, 354–358 (2015).
Lee, S.-G. & Magnusson, R. Band flips and bound-state transitions in leaky-mode photonic lattices. Phys. Rev. B 99, 045304 (2019).
Daxhelet, X. & Kulishov, M. Principle and observe of long-period gratings: when a loss turns into a acquire. Decide. Lett. 28, 686–688 (2003).
Kulishov, M., Jones, H. & Kress, B. Evaluation of PT-symmetric quantity gratings past the paraxial approximation. Decide. Categorical 23, 9347–9362 (2015).
Kulishov, M., Kress, B. & Slavík, R. Resonant cavities based mostly on parity-time-symmetric diffractive gratings. Decide. Categorical 21, 9473–9483 (2013).
Makris, Ok. G., Musslimani, Z. H., Christodoulides, D. N. & Rotter, S. Fixed-intensity waves and their modulation instability in non-Hermitian potentials. Nat. Commun. 6, 1–7 (2015).
Makris, Ok., Krešić, I., Brandstötter, A. & Rotter, S. Scattering-free channels of invisibility throughout non-Hermitian media. Optica 7, 619–623 (2020).
Makris, Ok. G., Ge, L. & Türeci, H. Anomalous transient amplification of waves in non-normal photonic media. Phys. Rev. X 4, 041044 (2014).
Rivet, E. et al. Fixed-pressure sound waves in non-Hermitian disordered media. Nat. Phys. 14, 942–947 (2018).
Hardy, A., Welch, D. F. & Streifer, W. Evaluation of second-order gratings. IEEE J. Quantum Electron. 25, 2096–2105 (1989).
Kazarinov, R. & Henry, C. Second-order distributed suggestions lasers with mode choice offered by first-order radiation losses. IEEE J. Quantum Electron. 21, 144–150 (1985).
Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Sure states within the continuum. Nat. Rev. Mater. 1, 16048 (2016).
Koshelev, Ok., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Uneven metasurfaces with high-Q resonances ruled by certain states within the continuum. Phys. Rev. Lett. 121, 193903 (2018).
Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 13, 390–396 (2019).
Kim, S. et al. Photonic waveguide to free-space Gaussian beam excessive mode converter. Mild Sci. Appl. 7, 72 (2018).
Yulaev, A. et al. Metasurface-integrated photonic platform for versatile free-space beam projection with polarization management. ACS Photonics 6, 2902–2909 (2019).
Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10−11 instability. Optica 5, 443–449 (2018).
Berman, P. R. Atom Interferometry (Tutorial Press, 1997).