Saturday, December 9, 2023
HomeNanotechnologyDistinctive factors in lossy media result in deep polynomial wave penetration with...

Distinctive factors in lossy media result in deep polynomial wave penetration with spatially uniform energy loss


  • Miri, M.-A. & Alù, A. Distinctive factors in optics and photonics. Science 363, eaar7709 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Özdemir, Ş., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and distinctive factors in photonics. Nat. Mater. 18, 783–798 (2019).

    Article 

    Google Scholar
     

  • Peng, B. et al. Loss-induced suppression and revival of lasing. Science 346, 328–332 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Peng, B. et al. Chiral modes and directional lasing at distinctive factors. Proc. Natl Acad. Sci. USA 113, 6845–6850 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Brandstetter, M. et al. Reversing the pump dependence of a laser at an distinctive level. Nat. Commun. 5, 4034 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Chen, W., Özdemir, Ş. Ok., Zhao, G., Wiersig, J. & Yang, L. Distinctive factors improve sensing in an optical microcavity. Nature 548, 192–196 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Hodaei, H. et al. Enhanced sensitivity at higher-order distinctive factors. Nature 548, 187–191 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Guo, A. et al. Statement of P T-symmetry breaking in advanced optical potentials. Phys. Rev. Lett. 103, 093902 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Rüter, C. E. et al. Statement of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article 

    Google Scholar
     

  • Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Feng, L. et al. Demonstration of a large-scale optical distinctive level construction. Decide. Categorical 22, 1760–1767 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Regensburger, A. et al. Parity–time artificial photonic lattices. Nature 488, 167–171 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Doppler, J. et al. Dynamically encircling an distinctive level for uneven mode switching. Nature 537, 76–79 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Poli, C., Bellec, M., Kuhl, U., Mortessagne, F. & Schomerus, H. Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6, 1–5 (2015).

    Article 

    Google Scholar
     

  • Weimann, S. et al. Topologically protected certain states in photonic parity–time-symmetric crystals. Nat. Mater. 16, 433–438 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Shen, H., Zhen, B. & Fu, L. Topological band principle for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Yoon, J. W. et al. Time-asymmetric loop round an distinctive level over the complete optical communications band. Nature 562, 86–90 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic buildings. Phys. Rev. Lett. 106, 213901 (2011).

    Article 

    Google Scholar
     

  • Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Zhen, B. et al. Spawning rings of remarkable factors out of Dirac cones. Nature 525, 354–358 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Lee, S.-G. & Magnusson, R. Band flips and bound-state transitions in leaky-mode photonic lattices. Phys. Rev. B 99, 045304 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Daxhelet, X. & Kulishov, M. Principle and observe of long-period gratings: when a loss turns into a acquire. Decide. Lett. 28, 686–688 (2003).

    Article 

    Google Scholar
     

  • Kulishov, M., Jones, H. & Kress, B. Evaluation of PT-symmetric quantity gratings past the paraxial approximation. Decide. Categorical 23, 9347–9362 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Kulishov, M., Kress, B. & Slavík, R. Resonant cavities based mostly on parity-time-symmetric diffractive gratings. Decide. Categorical 21, 9473–9483 (2013).

    Article 

    Google Scholar
     

  • Makris, Ok. G., Musslimani, Z. H., Christodoulides, D. N. & Rotter, S. Fixed-intensity waves and their modulation instability in non-Hermitian potentials. Nat. Commun. 6, 1–7 (2015).

    Article 

    Google Scholar
     

  • Makris, Ok., Krešić, I., Brandstötter, A. & Rotter, S. Scattering-free channels of invisibility throughout non-Hermitian media. Optica 7, 619–623 (2020).

    Article 

    Google Scholar
     

  • Makris, Ok. G., Ge, L. & Türeci, H. Anomalous transient amplification of waves in non-normal photonic media. Phys. Rev. X 4, 041044 (2014).


    Google Scholar
     

  • Rivet, E. et al. Fixed-pressure sound waves in non-Hermitian disordered media. Nat. Phys. 14, 942–947 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Hardy, A., Welch, D. F. & Streifer, W. Evaluation of second-order gratings. IEEE J. Quantum Electron. 25, 2096–2105 (1989).

    CAS 
    Article 

    Google Scholar
     

  • Kazarinov, R. & Henry, C. Second-order distributed suggestions lasers with mode choice offered by first-order radiation losses. IEEE J. Quantum Electron. 21, 144–150 (1985).

    Article 

    Google Scholar
     

  • Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Sure states within the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Koshelev, Ok., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Uneven metasurfaces with high-Q resonances ruled by certain states within the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    Article 

    Google Scholar
     

  • Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photonics 13, 390–396 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Kim, S. et al. Photonic waveguide to free-space Gaussian beam excessive mode converter. Mild Sci. Appl. 7, 72 (2018).

    Article 

    Google Scholar
     

  • Yulaev, A. et al. Metasurface-integrated photonic platform for versatile free-space beam projection with polarization management. ACS Photonics 6, 2902–2909 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10−11 instability. Optica 5, 443–449 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Berman, P. R. Atom Interferometry (Tutorial Press, 1997).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments