Armand, M. & Tarascon, J. M. Constructing higher batteries. Nature 451, 652–657 (2008).
Cheng, X., Zhang, R., Zhao, C. & Zhang, Q. Towards protected lithium steel anode in rechargeable batteries: a assessment. Chem. Rev. 117, 10403–10473 (2017).
Dunn, B., Kamath, H. & Tarascon, J. Electrical power storage for the grid: a battery of decisions. Science 334, 928 (2011).
Lin, D., Liu, Y. & Cui, Y. Reviving the lithium steel anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).
Zhang, X., Yang, Y. & Zhou, Z. In direction of sensible lithium-metal anodes. Chem. Soc. Rev. 49, 3040–3071 (2020).
Xu, W. et al. Lithium steel anodes for rechargeable batteries. Vitality Environ. Sci. 7, 513–537 (2014).
Xin, S., Chang, Z., Zhang, X. & Guo, Y. Progress of rechargeable lithium steel batteries primarily based on conversion reactions. Natl Sci. Rev. 4, 54–70 (2017).
Wang, H. et al. Alkali steel anodes for rechargeable batteries. Chem 5, 313–338 (2019).
Ma, J. et al. Prevention of dendrite development and quantity growth to present high-performance aprotic bimetallic Li-Na alloy–O2 batteries. Nat. Chem. 11, 64–70 (2019).
Yan, C. et al. Twin-layered movie protected lithium steel anode to allow dendrite-free lithium deposition. Adv. Mater. 30, 1707629 (2018).
Liu, Y. et al. Making Li-metal electrodes rechargeable by controlling the dendrite development course. Nat. Vitality 2, 17083 (2017).
Choi, J. W. & Aurbach, D. Promise and actuality of post-lithium-ion batteries with excessive power densities. Nat. Rev. Mater. 1, 16013 (2016).
Aurbach, D. et al. Current research of the lithium-liquid electrolyte interface electrochemical, morphological and spectral research of some vital programs. J. Energy Sources 54, 76–84 (1995).
Xu, R. et al. Synthetic interphases for extremely secure lithium steel anode. Matter 1, 317–344 (2019).
Yu, Z., Cui, Y. & Bao, Z. Design rules of synthetic strong electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020).
Fan, X. et al. Non-flammable electrolyte allows Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).
Kim, M. S. et al. Enabling reversible redox reactions in electrochemical cells utilizing protected LiAl intermetallics as lithium steel anodes. Sci. Adv. 5, eaax5587 (2019).
Wang, Y. et al. Spherical Li deposited inside 3d Cu skeleton as anode with ultrastable efficiency. ACS Appl. Mater. Interfaces 10, 20244–20249 (2018).
Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A brief assessment of failure mechanisms of lithium steel and lithiated graphite anodes in liquid electrolyte options. Stable State Ion. 148, 405–416 (2002).
Bai, P. et al. Interactions between lithium growths and nanoporous ceramic separators. Joule 2, 2434–2449 (2018).
Stolz, L., Homann, G., Winter, M. & Kasnatscheew, J. Realizing poly(ethylene oxide) as a polymer for strong electrolytes in excessive voltage lithium batteries through easy modification of the cell setup. Mater. Adv. 2, 3251–3256 (2021).
Homann, G. et al. Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with excessive voltage optimistic electrodes: evaluating the position of electrolyte oxidation in fast cell failure. Sci. Rep. 10, 4390 (2020).
Cheng, X. et al. A assessment of strong electrolyte interphases on lithium steel anode. Adv. Sci. 3, 1500213 (2016).
Chen, H. et al. Uniform excessive ionic conducting lithium sulfide safety layer for secure lithium steel anode. Adv. Vitality Mater. 9, 1900858 (2019).
Kozen, A. C. et al. Subsequent-generation lithium steel anode engineering through atomic layer deposition. ACS Nano 9, 5884–5892 (2015).
Li, N., Yin, Y., Yang, C. & Guo, Y. A man-made strong electrolyte interphase layer for secure lithium steel anodes. Adv. Mater. 28, 1853–1858 (2016).
Pathak, R. et al. Ultrathin bilayer of graphite/SiO2 as strong interface for reviving Li steel anode. Adv. Vitality Mater. 9, 1901486 (2019).
Yan, C. et al. 4.5 V high-voltage rechargeable batteries enabled by the discount of polarization on the lithium steel anode. Angew. Chem. Int. Ed. 58, 15235–15238 (2019).
Zhao, J. et al. Floor fluorination of reactive battery anode supplies for enhanced stability. J. Am. Chem. Soc. 139, 11550–11558 (2017).
Li, N. et al. A versatile strong electrolyte interphase layer for long-life lithium steel anodes. Angew. Chem. Int. Ed. 57, 1505–1509 (2018).
Liu, Okay. et al. Lithium steel anodes with an adaptive “solid-liquid” interfacial protecting layer. J. Am. Chem. Soc. 139, 4815–4820 (2017).
Solar, Y. et al. A novel natural “polyurea” skinny movie for ultralong-life lithium-metal anodes through molecular-layer deposition. Adv. Mater. 31, 1806541 (2019).
Wang, G. et al. Self-stabilized and strongly adhesive supramolecular polymer protecting layer allows ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem. Int. Ed. 59, 2055–2060 (2020).
Zhu, B. et al. Poly(dimethylsiloxane) skinny movie as a secure interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 29, 1603755 (2017).
Xu, R. et al. Twin-phase single-ion pathway interfaces for strong lithium steel in working batteries. Adv. Mater. 31, 1808392 (2019).
Xu, R. et al. Synthetic gentle–inflexible protecting layer for dendrite-free lithium steel anode. Adv. Funct. Mater. 28, 1705838 (2018).
Janek, J. & Zeier, W. G. A strong future for battery growth. Nat. Vitality 1, 16141 (2016).
Liu, X., Liu, J., Qian, T., Chen, H. & Yan, C. Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free lithium steel anode. Adv. Mater. 32, 1902724 (2020).
Wu, C. et al. Mesoporous silica strengthened hybrid polymer synthetic layer for high-energy and long-cycling lithium steel batteries. ACS Vitality Lett. 5, 1644–1652 (2020).
Homann, G., Stolz, L., Winter, M. & Kasnatscheew, J. Elimination of “voltage noise” of poly (ethylene oxide)-based strong electrolytes in high-voltage lithium batteries: linear versus community polymers. iScience 23, 101225 (2020).
Zhao, Q. et al. Constructing natural/inorganic hybrid interphases for quick interfacial transport in rechargeable steel batteries. Angew. Chem. Int. Ed. 57, 992–996 (2018).
Kozen, A. C. et al. Stabilization of lithium steel anodes by hybrid synthetic strong electrolyte interphase. Chem. Mater. 29, 6298–6307 (2017).
Liu, F. et al. Fabrication of hybrid silicate coatings by a easy vapor deposition technique for lithium steel anodes. Adv. Vitality Mater. 8, 1701744 (2018).
Pang, Q., Zhou, L. & Nazar, L. F. Elastic and Li-ion-percolating hybrid membrane stabilizes Li steel plating. Proc. Natl Acad. Sci. USA 115, 12389 (2018).
Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: the place two small worlds meet. Science 314, 1107 (2006).
Krishnamoorti, R. Methods for dispersing nanoparticles in polymers. MRS Bull. 32, 341–347 (2007).
Xie, Y. et al. All-in-one porous polymer adsorbents with glorious environmental chemosensory responsivity, visible detectivity, superfast adsorption, and simple regeneration. Adv. Mater. 31, 1900104 (2019).
Mai, W. et al. Water-dispersible, responsive, and carbonizable bushy microporous polymeric nanospheres. J. Am. Chem. Soc. 137, 13256–13259 (2015).
Lutz, J., Lehn, J., Meijer, E. W. & Matyjaszewski, Okay. From precision polymers to advanced supplies and programs. Nat. Rev. Mater. 1, 16024 (2016).
Zhou, M. et al. Ultrathin but strong single lithium-ion conducting quasi-solid-state polymer-brush electrolytes allow ultralong-life and dendrite-free lithium-metal batteries. Adv. Mater. 33, 2100943 (2021).
Agapov, A. L., Wang, Y., Kunal, Okay., Robertson, C. G. & Sokolov, A. P. Impact of polar interactions on polymer dynamics. Macromolecules 45, 8430–8437 (2012).
Lian, H. et al. Enhanced actuation in functionalized carbon nanotube–Nafion composites. Sens. Actuators B 156, 187–193 (2011).
Martín, Z., Jiménez, I., Gómez-Fatou, M. A., West, M. & Hitchcock, A. P. Interfacial interactions in polypropylene–organoclay–elastomer nanocomposites: affect of polar modifications on the placement of the clay. Macromolecules 44, 2179–2189 (2011).
Xu, Y. et al. Ion-transport-rectifying layer allows Li-metal batteries with excessive power density. Matter 3, 1685–1700 (2020).
Meng, J., Chu, F., Hu, J. & Li, C. Liquid polydimethylsiloxane grafting to allow dendrite-free Li plating for extremely reversible Li-metal batteries. Adv. Funct. Mater. 29, 1902220 (2019).
Tu, Z. et al. Quick ion transport at strong–strong interfaces in hybrid battery anodes. Nat. Vitality 3, 310–316 (2018).
Kim, M. S. et al. Langmuir–Blodgett synthetic solid-electrolyte interphases for sensible lithium steel batteries. Nat. Vitality 3, 889–898 (2018).
Berg, E. J., Villevieille, C., Streich, D., Trabesinger, S. & Novák, P. Rechargeable batteries: greedy for the boundaries of chemistry. J. Electrochem. Soc. 162, A2468–A2475 (2015).
Cheng, X. et al. Twin-phase lithium steel anode containing a polysulfide-induced strong electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano 9, 6373–6382 (2015).
Wu, J. et al. Polycationic polymer layer for air-stable and dendrite-free Li steel anodes in carbonate electrolytes. Adv. Mater. 33, 2007428 (2021).
Tang, W. et al. Lithium silicide floor enrichment: an answer to lithium steel battery. Adv. Mater. 30, 1801745 (2018).
Zhou, Y. et al. Redistributing Li-ion flux by parallelly aligned holey nanosheets for dendrite-free Li steel anodes. Adv. Mater. 32, 2003920 (2020).
Lee, D. et al. Copper nitride nanowires printed Li with secure biking for Li steel batteries in carbonate electrolytes. Adv. Mater. 32, 1905573 (2020).
Cha, E. et al. 2D MoS2 as an environment friendly protecting layer for lithium steel anodes in high-performance Li–S batteries. Nat. Nanotechnol. 13, 337–344 (2018).
Liang, X. et al. A facile floor chemistry path to a stabilized lithium steel anode. Nat. Vitality 2, 17119 (2017).
Pathak, R. et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 11, 93 (2020).
He, G., Li, Q., Shen, Y. & Ding, Y. Versatile amalgam movie allows secure lithium steel anodes with excessive capacities. Angew. Chem. Int. Ed. 58, 18466–18470 (2019).
Yan, C. et al. An armored combined conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30, 1804461 (2018).
Adair, Okay. R. et al. Extremely secure lithium steel anode interface through molecular layer deposition zircone coatings for lengthy life next-generation battery programs. Angew. Chem. Int. Ed. 58, 15797–15802 (2019).
Yin, Y. et al. Metallic chloride perovskite skinny movie primarily based interfacial layer for shielding lithium steel from liquid electrolyte. Nat. Commun. 11, 1761 (2020).
Bai, M. et al. A scalable strategy to dendrite-free lithium anodes through spontaneous discount of spray-coated graphene oxide layers. Adv. Mater. 30, 1801213 (2018).
Salvatierra, R. V. et al. Suppressing Li steel dendrites by way of a strong Li-ion backup layer. Adv. Mater. 30, 1803869 (2018).
Guo, Y. et al. An autotransferable g-C3N4 Li+-modulating layer towards secure lithium anodes. Adv. Mater. 31, 1900342 (2019).
Shen, X. et al. Lithium anode secure in air for low-cost fabrication of a dendrite-free lithium battery. Nat. Commun. 10, 900 (2019).
Gao, Y. et al. Interfacial chemistry regulation through a skin-grafting technique allows high-performance lithium-metal batteries. J. Am. Chem. Soc. 139, 15288–15291 (2017).
Zhang, X. et al. An very simple technique for safeguarding lithium anodes in Li-O2 batteries. Angew. Chem. Int. Ed. 57, 12814–12818 (2018).
Zhang, Okay. et al. A high-performance lithium steel battery with ion-selective nanofluidic transport in a conjugated microporous polymer protecting layer. Adv. Mater. 33, 2006323 (2021).
Gao, R. et al. Fatigue-resistant interfacial layer for protected lithium steel batteries. Angew. Chem. Int. Ed. 60, 25508–25513 (2021).
Gao, Y. et al. Polymer–inorganic strong–electrolyte interphase for secure lithium steel batteries beneath lean electrolyte situations. Nat. Mater. 18, 384–389 (2019).
Jiang, Z. et al. Facile technology of polymer–alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability. Angew. Chem. Int. Ed. 58, 11374–11378 (2019).
Liu, S. et al. In situ strong electrolyte interphase from spray quenching on molten Li: a brand new method to assemble high-performance lithium-metal anodes. Adv. Mater. 31, 1806470 (2019).
Gu, Y. et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali steel anodes. Nat. Commun. 9, 1339 (2018).
Lu, D. et al. Failure mechanism for fast-charged lithium steel batteries with liquid electrolytes. Adv. Vitality Mater. 5, 1400993 (2015).
Niu, C. et al. Balancing interfacial reactions to realize lengthy cycle life in high-energy lithium steel batteries. Nat. Vitality 6, 723–732 (2021).
Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. Correct willpower of Coulombic effectivity for lithium steel anodes and lithium steel batteries. Adv. Vitality Mater. 8, 1702097 (2018).