Wednesday, December 6, 2023
HomeNanotechnologyA sturdy all-organic protecting layer in the direction of ultrahigh-rate and large-capacity...

A sturdy all-organic protecting layer in the direction of ultrahigh-rate and large-capacity Li steel anodes


  • Armand, M. & Tarascon, J. M. Constructing higher batteries. Nature 451, 652–657 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, X., Zhang, R., Zhao, C. & Zhang, Q. Towards protected lithium steel anode in rechargeable batteries: a assessment. Chem. Rev. 117, 10403–10473 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Dunn, B., Kamath, H. & Tarascon, J. Electrical power storage for the grid: a battery of decisions. Science 334, 928 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Lin, D., Liu, Y. & Cui, Y. Reviving the lithium steel anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, X., Yang, Y. & Zhou, Z. In direction of sensible lithium-metal anodes. Chem. Soc. Rev. 49, 3040–3071 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Xu, W. et al. Lithium steel anodes for rechargeable batteries. Vitality Environ. Sci. 7, 513–537 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Xin, S., Chang, Z., Zhang, X. & Guo, Y. Progress of rechargeable lithium steel batteries primarily based on conversion reactions. Natl Sci. Rev. 4, 54–70 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Wang, H. et al. Alkali steel anodes for rechargeable batteries. Chem 5, 313–338 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Ma, J. et al. Prevention of dendrite development and quantity growth to present high-performance aprotic bimetallic Li-Na alloy–O2 batteries. Nat. Chem. 11, 64–70 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yan, C. et al. Twin-layered movie protected lithium steel anode to allow dendrite-free lithium deposition. Adv. Mater. 30, 1707629 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Making Li-metal electrodes rechargeable by controlling the dendrite development course. Nat. Vitality 2, 17083 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Choi, J. W. & Aurbach, D. Promise and actuality of post-lithium-ion batteries with excessive power densities. Nat. Rev. Mater. 1, 16013 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Aurbach, D. et al. Current research of the lithium-liquid electrolyte interface electrochemical, morphological and spectral research of some vital programs. J. Energy Sources 54, 76–84 (1995).

    CAS 
    Article 

    Google Scholar
     

  • Xu, R. et al. Synthetic interphases for extremely secure lithium steel anode. Matter 1, 317–344 (2019).

    Article 

    Google Scholar
     

  • Yu, Z., Cui, Y. & Bao, Z. Design rules of synthetic strong electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020).

    Article 

    Google Scholar
     

  • Fan, X. et al. Non-flammable electrolyte allows Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kim, M. S. et al. Enabling reversible redox reactions in electrochemical cells utilizing protected LiAl intermetallics as lithium steel anodes. Sci. Adv. 5, eaax5587 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Y. et al. Spherical Li deposited inside 3d Cu skeleton as anode with ultrastable efficiency. ACS Appl. Mater. Interfaces 10, 20244–20249 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A brief assessment of failure mechanisms of lithium steel and lithiated graphite anodes in liquid electrolyte options. Stable State Ion. 148, 405–416 (2002).

    CAS 
    Article 

    Google Scholar
     

  • Bai, P. et al. Interactions between lithium growths and nanoporous ceramic separators. Joule 2, 2434–2449 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Stolz, L., Homann, G., Winter, M. & Kasnatscheew, J. Realizing poly(ethylene oxide) as a polymer for strong electrolytes in excessive voltage lithium batteries through easy modification of the cell setup. Mater. Adv. 2, 3251–3256 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Homann, G. et al. Poly(ethylene oxide)-based electrolyte for solid-state-lithium-batteries with excessive voltage optimistic electrodes: evaluating the position of electrolyte oxidation in fast cell failure. Sci. Rep. 10, 4390 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, X. et al. A assessment of strong electrolyte interphases on lithium steel anode. Adv. Sci. 3, 1500213 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. et al. Uniform excessive ionic conducting lithium sulfide safety layer for secure lithium steel anode. Adv. Vitality Mater. 9, 1900858 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kozen, A. C. et al. Subsequent-generation lithium steel anode engineering through atomic layer deposition. ACS Nano 9, 5884–5892 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Li, N., Yin, Y., Yang, C. & Guo, Y. A man-made strong electrolyte interphase layer for secure lithium steel anodes. Adv. Mater. 28, 1853–1858 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Pathak, R. et al. Ultrathin bilayer of graphite/SiO2 as strong interface for reviving Li steel anode. Adv. Vitality Mater. 9, 1901486 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yan, C. et al. 4.5 V high-voltage rechargeable batteries enabled by the discount of polarization on the lithium steel anode. Angew. Chem. Int. Ed. 58, 15235–15238 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, J. et al. Floor fluorination of reactive battery anode supplies for enhanced stability. J. Am. Chem. Soc. 139, 11550–11558 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Li, N. et al. A versatile strong electrolyte interphase layer for long-life lithium steel anodes. Angew. Chem. Int. Ed. 57, 1505–1509 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Liu, Okay. et al. Lithium steel anodes with an adaptive “solid-liquid” interfacial protecting layer. J. Am. Chem. Soc. 139, 4815–4820 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Solar, Y. et al. A novel natural “polyurea” skinny movie for ultralong-life lithium-metal anodes through molecular-layer deposition. Adv. Mater. 31, 1806541 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, G. et al. Self-stabilized and strongly adhesive supramolecular polymer protecting layer allows ultrahigh-rate and large-capacity lithium-metal anode. Angew. Chem. Int. Ed. 59, 2055–2060 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhu, B. et al. Poly(dimethylsiloxane) skinny movie as a secure interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 29, 1603755 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Xu, R. et al. Twin-phase single-ion pathway interfaces for strong lithium steel in working batteries. Adv. Mater. 31, 1808392 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, R. et al. Synthetic gentle–inflexible protecting layer for dendrite-free lithium steel anode. Adv. Funct. Mater. 28, 1705838 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Janek, J. & Zeier, W. G. A strong future for battery growth. Nat. Vitality 1, 16141 (2016).

    Article 

    Google Scholar
     

  • Liu, X., Liu, J., Qian, T., Chen, H. & Yan, C. Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free lithium steel anode. Adv. Mater. 32, 1902724 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Wu, C. et al. Mesoporous silica strengthened hybrid polymer synthetic layer for high-energy and long-cycling lithium steel batteries. ACS Vitality Lett. 5, 1644–1652 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Homann, G., Stolz, L., Winter, M. & Kasnatscheew, J. Elimination of “voltage noise” of poly (ethylene oxide)-based strong electrolytes in high-voltage lithium batteries: linear versus community polymers. iScience 23, 101225 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Zhao, Q. et al. Constructing natural/inorganic hybrid interphases for quick interfacial transport in rechargeable steel batteries. Angew. Chem. Int. Ed. 57, 992–996 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kozen, A. C. et al. Stabilization of lithium steel anodes by hybrid synthetic strong electrolyte interphase. Chem. Mater. 29, 6298–6307 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Liu, F. et al. Fabrication of hybrid silicate coatings by a easy vapor deposition technique for lithium steel anodes. Adv. Vitality Mater. 8, 1701744 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pang, Q., Zhou, L. & Nazar, L. F. Elastic and Li-ion-percolating hybrid membrane stabilizes Li steel plating. Proc. Natl Acad. Sci. USA 115, 12389 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Balazs, A. C., Emrick, T. & Russell, T. P. Nanoparticle polymer composites: the place two small worlds meet. Science 314, 1107 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Krishnamoorti, R. Methods for dispersing nanoparticles in polymers. MRS Bull. 32, 341–347 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Xie, Y. et al. All-in-one porous polymer adsorbents with glorious environmental chemosensory responsivity, visible detectivity, superfast adsorption, and simple regeneration. Adv. Mater. 31, 1900104 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mai, W. et al. Water-dispersible, responsive, and carbonizable bushy microporous polymeric nanospheres. J. Am. Chem. Soc. 137, 13256–13259 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Lutz, J., Lehn, J., Meijer, E. W. & Matyjaszewski, Okay. From precision polymers to advanced supplies and programs. Nat. Rev. Mater. 1, 16024 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Zhou, M. et al. Ultrathin but strong single lithium-ion conducting quasi-solid-state polymer-brush electrolytes allow ultralong-life and dendrite-free lithium-metal batteries. Adv. Mater. 33, 2100943 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Agapov, A. L., Wang, Y., Kunal, Okay., Robertson, C. G. & Sokolov, A. P. Impact of polar interactions on polymer dynamics. Macromolecules 45, 8430–8437 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Lian, H. et al. Enhanced actuation in functionalized carbon nanotube–Nafion composites. Sens. Actuators B 156, 187–193 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Martín, Z., Jiménez, I., Gómez-Fatou, M. A., West, M. & Hitchcock, A. P. Interfacial interactions in polypropylene–organoclay–elastomer nanocomposites: affect of polar modifications on the placement of the clay. Macromolecules 44, 2179–2189 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Y. et al. Ion-transport-rectifying layer allows Li-metal batteries with excessive power density. Matter 3, 1685–1700 (2020).

    Article 

    Google Scholar
     

  • Meng, J., Chu, F., Hu, J. & Li, C. Liquid polydimethylsiloxane grafting to allow dendrite-free Li plating for extremely reversible Li-metal batteries. Adv. Funct. Mater. 29, 1902220 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Tu, Z. et al. Quick ion transport at strong–strong interfaces in hybrid battery anodes. Nat. Vitality 3, 310–316 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Kim, M. S. et al. Langmuir–Blodgett synthetic solid-electrolyte interphases for sensible lithium steel batteries. Nat. Vitality 3, 889–898 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Berg, E. J., Villevieille, C., Streich, D., Trabesinger, S. & Novák, P. Rechargeable batteries: greedy for the boundaries of chemistry. J. Electrochem. Soc. 162, A2468–A2475 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Cheng, X. et al. Twin-phase lithium steel anode containing a polysulfide-induced strong electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries. ACS Nano 9, 6373–6382 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Wu, J. et al. Polycationic polymer layer for air-stable and dendrite-free Li steel anodes in carbonate electrolytes. Adv. Mater. 33, 2007428 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Tang, W. et al. Lithium silicide floor enrichment: an answer to lithium steel battery. Adv. Mater. 30, 1801745 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Redistributing Li-ion flux by parallelly aligned holey nanosheets for dendrite-free Li steel anodes. Adv. Mater. 32, 2003920 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Lee, D. et al. Copper nitride nanowires printed Li with secure biking for Li steel batteries in carbonate electrolytes. Adv. Mater. 32, 1905573 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Cha, E. et al. 2D MoS2 as an environment friendly protecting layer for lithium steel anodes in high-performance Li–S batteries. Nat. Nanotechnol. 13, 337–344 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Liang, X. et al. A facile floor chemistry path to a stabilized lithium steel anode. Nat. Vitality 2, 17119 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Pathak, R. et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat. Commun. 11, 93 (2020).

    CAS 
    Article 

    Google Scholar
     

  • He, G., Li, Q., Shen, Y. & Ding, Y. Versatile amalgam movie allows secure lithium steel anodes with excessive capacities. Angew. Chem. Int. Ed. 58, 18466–18470 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yan, C. et al. An armored combined conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30, 1804461 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Adair, Okay. R. et al. Extremely secure lithium steel anode interface through molecular layer deposition zircone coatings for lengthy life next-generation battery programs. Angew. Chem. Int. Ed. 58, 15797–15802 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Yin, Y. et al. Metallic chloride perovskite skinny movie primarily based interfacial layer for shielding lithium steel from liquid electrolyte. Nat. Commun. 11, 1761 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Bai, M. et al. A scalable strategy to dendrite-free lithium anodes through spontaneous discount of spray-coated graphene oxide layers. Adv. Mater. 30, 1801213 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Salvatierra, R. V. et al. Suppressing Li steel dendrites by way of a strong Li-ion backup layer. Adv. Mater. 30, 1803869 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Y. et al. An autotransferable g-C3N4 Li+-modulating layer towards secure lithium anodes. Adv. Mater. 31, 1900342 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shen, X. et al. Lithium anode secure in air for low-cost fabrication of a dendrite-free lithium battery. Nat. Commun. 10, 900 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Y. et al. Interfacial chemistry regulation through a skin-grafting technique allows high-performance lithium-metal batteries. J. Am. Chem. Soc. 139, 15288–15291 (2017).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, X. et al. An very simple technique for safeguarding lithium anodes in Li-O2 batteries. Angew. Chem. Int. Ed. 57, 12814–12818 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, Okay. et al. A high-performance lithium steel battery with ion-selective nanofluidic transport in a conjugated microporous polymer protecting layer. Adv. Mater. 33, 2006323 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Gao, R. et al. Fatigue-resistant interfacial layer for protected lithium steel batteries. Angew. Chem. Int. Ed. 60, 25508–25513 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Gao, Y. et al. Polymer–inorganic strong–electrolyte interphase for secure lithium steel batteries beneath lean electrolyte situations. Nat. Mater. 18, 384–389 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Jiang, Z. et al. Facile technology of polymer–alloy hybrid layers for dendrite-free lithium-metal anodes with improved moisture stability. Angew. Chem. Int. Ed. 58, 11374–11378 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Liu, S. et al. In situ strong electrolyte interphase from spray quenching on molten Li: a brand new method to assemble high-performance lithium-metal anodes. Adv. Mater. 31, 1806470 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gu, Y. et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali steel anodes. Nat. Commun. 9, 1339 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lu, D. et al. Failure mechanism for fast-charged lithium steel batteries with liquid electrolytes. Adv. Vitality Mater. 5, 1400993 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Niu, C. et al. Balancing interfacial reactions to realize lengthy cycle life in high-energy lithium steel batteries. Nat. Vitality 6, 723–732 (2021).

    CAS 
    Article 

    Google Scholar
     

  • Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. Correct willpower of Coulombic effectivity for lithium steel anodes and lithium steel batteries. Adv. Vitality Mater. 8, 1702097 (2018).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments